
Indian Institue of Technology Bombay
Electrical Engineering

B.TECH PROJECT - II REPORT
ANOMALOUS HUMAN ACTIVITY DETECTION

Parth Patil 170070011

Guide:
Rajbabu Velmurugan

Biplab Banerjee

June 30, 2021

1

2

1 Abstract

Anomaly detection refers to the act of identifying behaviour in data which is different
than normal. This can range from detecting malicious activity in a video to detecting
earthquake in a seismic data. Anomaly detection methods based on convolutional neu-
ral networks (CNNs) typically leverage proxy tasks, such as reconstructing input video
frames, to learn models describing normality without seeing anomalous samples at train-
ing time, and quantify the extent of abnormalities using the explicit reconstruction error
at test time. The main drawbacks of these approaches are that they do not consider the
diversity of normal patterns. Also, many existing approaches requires large number of
normal samples from a particular scene before it could detect anomalies. This makes
deployment in real world impractical. In this report we will have a look at approach
which tackles both the issues. We will also look at the detail code which can enable any
anomaly detection model to be adapted for a new scene using few frames. The code is
available at https://github.com/Parth1811/Few-Shot-Protypical-Anomaly-Detection

2 Introduction & Background

2.1 Anomaly Detection

The activities of a human being can be broadly classified into normal activities or anoma-
lous activities. A human being’s deviation from normal behavior causing harm to the
surrounding or to himself is categorized as an anomalous activity. The extensive research
of human activity recognition and its applications has thrown light upon anomaly detec-
tion. The existing approaches for anomalous human activity recognition are built based
on the type and speed of object movements along with how the objects of interest interact
with each other.

It is extensively used for prediction of time series data in which certain regularities are
checked in the data dimension. This can be used to predict stock market prices, weather
forecasting and time series prediction. It is also applied in the area of surveillance. This
involves identifying abnormal activities in videos which otherwise is heavily dependant
on manual monitoring and is therefore both human resource intensive and time consum-
ing. Some existing approaches to go about this task includes learning the latent space
representation corresponding to normal activities.

https://github.com/Parth1811/Few-Shot-Protypical-Anomaly-Detection

3

2.2 Memory Networks

There are a number of attempts to capture long-term dependencies in sequential data.
Long short-term memory (LSTM) addresses this problem using local memory cells, where
hidden states of the network record information in the past partially. The memorization
performance is, however, limited, as the size of the cell is typically small and the knowl-
edge in the hidden state is compressed. To overcome the limitation, memory networks
have recently been introduced. It uses a global memory that can be read and written
to, and performs a memorization task better than classical approaches. The memory
networks, however, require layer-wise supervision to learn models, making it hard to
train them using standard backpropagation. More recent works use continuous memory
representations or key-value pairs to read/write memories, allowing to train the memory
networks end-to-end. Several works adopt the memory networks for computer vision
tasks including visual question answering, one-shot learning, image generation, and video
summarization. We would also discuss a memory module but for anomaly detection with
a different memory updating strategy, which record various patterns of normal data to
individual items in the memory, and consider each item as a prototypical feature.

2.3 Prototypes and Criticisms

A prototype is a data instance that is representative of all the data. A criticism is a
data instance that is not well represented by the set of prototypes. The purpose of
criticisms is to provide insights together with prototypes, especially for data points which
the prototypes do not represent well. Prototypes and criticisms can be used independently
from a machine learning model to describe the data, but they can also be used to create
an interpretable model or to make a black box model interpretable.

The expression "data point" is used to refer to a single instance, to emphasize the
interpretation that an instance is also a point in a coordinate system where each feature
is a dimension. The following figure shows a simulated data distribution, with some of
the instances chosen as prototypes and some as criticisms. The small points are the data,
the large points the criticisms and the large squares the prototypes. The prototypes are
selected to cover the centers of the data distribution and the criticisms are points in a
cluster without a prototype.

4

Figure 1: Prototypes and Criticisms

2.4 Few Shot Learning (FSL)

Few-shot learning is the problem of making predictions based on a limited number of
samples. Few-shot learning is different from standard supervised learning. The goal of
few-shot learning is not to let the model recognize the images in the training set and then
generalize to the test set. Instead, the goal is to learn. “Learn to learn” sounds hard to
understand. You can think of it in this way. I train the model on a big training set. The
goal of training is not to know what an elephant is and what a tiger is. Instead, the goal
is to know the similarity and difference between objects.

After training, you can show the two images to the model and ask whether the two
are the same kind of animals. The model has similarities and differences between objects.
So, the model is able to tell that the contents in the two images are the same kind of
objects. Take a look at our training data again.

3 Literature Review

Recently there has been a lots of research in the field of detecting anomalous activities
in videos. Most of these depend on reconstruction of a normal future frame in order to

5

detect anomalies, using a lot of data to train the model. Here we discuss two papers, one
highlighting the prototypical model used, and another discussing the process to enable
few shot learning in anomaly detection.

3.1 Learning Memory-guided Normality for Anomaly Detec-
tion

In this paper the authors tried to address the problem that most of the approach for
anomaly detection do not consider the diversity of normal patterns explicitly, and the
powerful representation capacity of CNNs allows to reconstruct abnormal video frames
while predicting future frames. They presented an unsupervised learning approach to
anomaly detection that considers the diversity of normal patterns explicitly, while less-
ening the representation capacity of CNNs, using memory module with a new update
scheme where items in the memory record prototypical patterns of normal data. They
also proposed novel feature compactness and separateness losses to train the memory,
boosting the discriminative power of both memory items and deeply learned features
from normal data.

Figure 2: Overview of the framework for reconstructing a video frame.

The model mainly consists of three components: an encoder, a memory module, and
a decoder. The encoder inputs a normal video frame and extracts query features. The

6

features are then used to retrieve prototypical normal patterns in the memory items and
to update the memory. The query features and memory items aggregated (i.e., read) are
feed to the decoder for reconstructing the input video frame. The model is trained using
reconstruction, feature compactness, and feature separateness losses end-to-end. At test
time, weighted regular score is used in order to prevent the memory from being updated
by abnormal video frames.

3.2 Few-Shot Scene-Adaptive Anomaly Detection

In this paper the authors address the problem that most of the Anomaly detection models
requires huge database to be trained on in order to learn normal patterns. Hence such
models can be difficult to be deployed in real life, for example using anomaly detection in
CCTV videos placed at different points. They propose a novel few-shot scene-adaptive
anomaly detection problem to address the limitations of previous approaches. They
introduce the process of Meta-Training and Meta-Testing in order to achieve few-shot
learning.

3.2.1 Meta-Training

Consider a pre-trained anomaly detection model fθ : xıy with parameters θ. We adapt
to a task Ti by defining a loss function on the training set D tr

i of this task and use one
gradient update to change the parameters from θ to θ′i :

θ′i = θ − α∇θLTi (fθ; D tr
i) , wher e (1)

LTi (fθ; D tr
i) = ∑

(x j ,y j)εD tr
i

L(fθ(x j), y j) (2)

where α is the step size. Here L(fθ(x j), y j) is the loss function that measures the
difference between the predicted frame fθ(x j) and the actual future frame y j .

The updated parameters θ′ are specifically adapted to the task Ti . Intuitively we
would like θ′ to perform on the validation set Dval

i of this task. We measure the perfor-
mance of θ′ on Dval

i as:

LTi (f ′
θ; Dval

i) = ∑
(x j ,y j)εDval

i

L(f ′
θ(x j), y j) (3)

The goal of meta-training is to learn the initial model parameters θ, so that the scene-
adapted parameters θ′ obtained via Eq. 1 will minimize the loss in Eq. 3 across all tasks.

7

We minimize the loss over all the scenes sampled.

3.2.2 Meta-Testing

After meta-training, we obtain the learned model parameters θ. During meta-testing,
we are given a new target scene Snew . We simply use Eq. 1 to obtain the adapted
parameters θ′ based on K examples in Snew . Then we apply θ′ on the remaining frames
in the Snew to measure the performance. We use the first several frames of one video in
Snew for adaptation and use the remaining frames for testing. This is similar to real-world
settings where it is only possible to obtain the first several frames for a new camera.

3.2.3 Algorithm

Figure 3: Meta-Training and Meta-Testing Algorithm, Source: Yiwei Lu et al. Few-Shot
Scene-Adaptive Anomaly Detection

8

Figure 4: Flow chart of Meta-Training and Meta-Testing Algorithm, Source: Yiwei Lu
et al. Few-Shot Scene-Adaptive Anomaly Detection

4 Our approach and Results

We used the Meta-Training process laid out in the above to train the prototypical memory
model for anomaly detection. Hence hoping to achieve the benefits of the prototypical
model using only few frames, and hence cane be used to deploy in real life.

here are some of the results we achieve using this approach on different datasets.

9

N No. of iterations
AUC Score

USCD Ped2 CHUK Avenue IITB Dataset

4
10 91.74 79.05 67.89
100 72.01 82.07 70.09
500 68.215 81.55 65.43

5
10 87.308 79.45 70.08
100 68.95 82.86 69.65
500 64.011 75.53 68.03

5
10 85.32 80.04 70.54
100 88.487 82.9 66.62
500 51.219 74.69 66.62

Table 1: AUC score on different dataset for the model trained on Shanghai dataset

5 Code Documentation [Link to Code]

This project had an important task of writing the code for the proposed approach. There
were many hurdles that had to be over-come for this. In the initial attempt we tried
to refactor the code provided by Yiwei Lu et al [2]. But there were many issues while
running the code, hence we decided to instead take the model from Hyunjong Park et
al.[1], and the write the Meta-Training and Meta-Tessting algorithms from scratch.

These were some of the challenges which were addressed:-

1. Designing a method to sample N scenes and then sample few frames from each
scene in shuffled manner and without repeating.

2. Do the inner and outer update in PyTorch, without exhausting resources.

3. Handle the fact that different scenes have different number of frames available for
training.

4. Make the code general and usable with any dataset.

5. Enable easy swapping of the models for the Meta-Training and Meta-Testing pro-
cess.

https://github.com/Parth1811/Few-Shot-Protypical-Anomaly-Detection

10

5.1 Scene Loader

Data Loader is a helper class which takes in the path of the dataset where the videos
are stored, and then creates an iterator to go over all the frames present in dataset in a
shuffled order.

The original Data Loader class which was present with the Hyunjong Park et al.[1]
proposed model had mant flaws. Most significantly its inability to be used for multi-scene
dataset, and lack of easy way to sample scene. Here is a list of all the existing problems
with the Data Loader:

1. It takes videos from all scenes into a single array and then shuffles and draws samples
from it.

2. It had hard coded values for time-steps, etc.

3. It couldn’t handle different starting number for frames.

4. It stores lot of unnecessary information, for e.g. path of each frame; this could be
auto generated as it a sequential.

Figure 5: Scene Loader Flowchart

11

Scene Loader is a wrapper, over the previous DataLoader, while also improving all
the problems with the previous DataLoader. It takes in the vidoe path of the dataset like
the previous DataLoader, but instead creates an separate iterator for each scene in the
dataset. The SceneLoader class contains helper functions which enables easy sampling
of random samples from random scenes for each iteration of the training loop.

class SceneLoader(self, scenes_folder, transform, resize_height,

resize_width, k_shots=4, time_step=4, num_pred=1, num_workers=2,

shuffle=True, drop_last=True, single_scene=False)

,→

,→

Here are some of the helper functions and their uses:-

5.1.1 Setup Single/Multi Scene

def setup_singlescene(self, scenes_folder, transform, resize_height,

resize_width, k_shots, time_step, num_pred, num_workers, shuffle,

drop_last)

,→

,→

def setup_multiscene(self, scenes_folder, transform, resize_height,

resize_width, k_shots, time_step, num_pred, num_workers, shuffle,

drop_last)

,→

,→

These are the two setup functions, which are run based on the flag which tells whether
the dataset is single scene or multi scene. Input of the constructor are passed as it to
these function which then appropriately sets up all the internal variables of the class.

The old Data Loader expected the data to be in the following structure as shown in
the below figure. This made it hard to be used for the mutli scene datasets. Hence the
Scene loader was designed to support both the structure types, which enables it to work
with wide range of dataset, without changing the code.

Also there are a lot options which can be changed in the Scene Loader, Like the
transforms which has to applied to the image before processing. Also scene Loader can
handle video frame folders which do not start with 0000.jpg. Any sequence is valid as far
as it continuous without break in between.

12

(a) Old Data Loader expected dataset structure (b) Scene Loader expected dataset structure

5.1.2 Sample N random scenes

def get_dataloaders_of_N_random_scenes(self, N)

This function samples N random scenes from the avaible array of scenes, and then
result the iterator for these scene. The training and validation set then can be further
drevied from these iterators.

5.1.3 Process Label List

def process_label_list(self, label_list)

This function takes in the raw label list at the time of evaluation and removes the
first T −1 frames from each each video, where T is the time step.

5.2 Logging Module & Progress Bar

Extensive logs are saved for each step during both testing and training process. Every
input variable is stored in the log for further reference. During the testing (i.e. evaluation
of model), the score for each video is stored separately in a ’.npy’ file which then can be
given to the visualization program to plot the time series plot against the video. Along
with the logging, I also added progress bar and Estimated Time of Completion utilities
in order to get accurate status of the training,

13

Figure 7: Logging Output

5.3 Visualization Tools

Apart from the Training and Testing, I also developed a visualization tool using Pygames.
This enable me to playback the videos from continuous frames and also overlay the
evaluated scores for each frame on it, in order to get a better understanding of the model.

Figure 8: Visualization Output

14

6 References

1. Hyunjong Park, Jongyoun Noh, Bumsub Ham; Proceedings of the IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition (CVPR), 2020, pp. 14372-
14381

2. Yiwei Lu1, Frank Yu1, Mahesh Kumar Krishna Reddy1, and Yang Wang; Few-Shot
Scene-Adaptive Anomaly Detection. 2020

3. Yashswi Jain, Anomalous Human Activity Detection, Master of Technology Thesis,
2019

4. Shreyas, D.G., Raksha, S. & Prasad, B.G. Implementation of an Anomalous Human
Activity Recognition System. SN COMPUT. SCI. 1, 168 (2020).
https://doi.org/10.1007/s42979-020-00169-0

5. Christoph Molnar, Interpretable Machine Learning, A Guide for Making Black Box
Models Explainable. https://christophm.github.io/interpretable-ml-book/proto.html

6. Dhanya Thailappan.An Introduction to Few-Shot Learning
https://www.analyticsvidhya.com/blog/2021/05/an-introduction-to-few-shot-learning/

https://christophm.github.io/interpretable-ml-book/proto.html
https://www.analyticsvidhya.com/blog/2021/05/an-introduction-to-few-shot-learning/

	Abstract
	Introduction & Background
	Anomaly Detection
	Memory Networks
	Prototypes and Criticisms
	Few Shot Learning (FSL)

	Literature Review
	Learning Memory-guided Normality for Anomaly Detection
	Few-Shot Scene-Adaptive Anomaly Detection
	Meta-Training
	Meta-Testing
	Algorithm

	Our approach and Results
	Code Documentation [Link to Code]
	Scene Loader
	Setup Single/Multi Scene
	Sample N random scenes
	Process Label List

	Logging Module & Progress Bar
	Visualization Tools

	References

